There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{2}pi}{4} + \frac{{(77 - x)}^{2}}{16}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{4}pix^{2} + \frac{1}{16}x^{2} - \frac{77}{8}x + \frac{5929}{16}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}pix^{2} + \frac{1}{16}x^{2} - \frac{77}{8}x + \frac{5929}{16}\right)}{dx}\\=&\frac{1}{4}pi*2x + \frac{1}{16}*2x - \frac{77}{8} + 0\\=&\frac{pix}{2} + \frac{x}{8} - \frac{77}{8}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !