There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2{x}^{3} - 3x + sqrt(x) + sqrt(x)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsqrt(x) - 3x + sqrt(x) + 2x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsqrt(x) - 3x + sqrt(x) + 2x^{3}\right)}{dx}\\=&sqrt(x) + \frac{x*\frac{1}{2}}{(x)^{\frac{1}{2}}} - 3 + \frac{\frac{1}{2}}{(x)^{\frac{1}{2}}} + 2*3x^{2}\\=&sqrt(x) + \frac{x^{\frac{1}{2}}}{2} + \frac{1}{2x^{\frac{1}{2}}} + 6x^{2} - 3\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sqrt(x) + \frac{x^{\frac{1}{2}}}{2} + \frac{1}{2x^{\frac{1}{2}}} + 6x^{2} - 3\right)}{dx}\\=&\frac{\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}}{2x^{\frac{1}{2}}} + \frac{\frac{-1}{2}}{2x^{\frac{3}{2}}} + 6*2x + 0\\=&\frac{3}{4x^{\frac{1}{2}}} - \frac{1}{4x^{\frac{3}{2}}} + 12x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !