There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - {x}^{2})ln(x + {e}^{x}){\frac{1}{x}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x + {e}^{x})}{x^{3}} - \frac{ln(x + {e}^{x})}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x + {e}^{x})}{x^{3}} - \frac{ln(x + {e}^{x})}{x}\right)}{dx}\\=&\frac{-3ln(x + {e}^{x})}{x^{4}} + \frac{(1 + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{x^{3}(x + {e}^{x})} - \frac{-ln(x + {e}^{x})}{x^{2}} - \frac{(1 + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{x(x + {e}^{x})}\\=&\frac{-3ln(x + {e}^{x})}{x^{4}} + \frac{{e}^{x}}{(x + {e}^{x})x^{3}} - \frac{{e}^{x}}{(x + {e}^{x})x} + \frac{ln(x + {e}^{x})}{x^{2}} - \frac{1}{(x + {e}^{x})x} + \frac{1}{(x + {e}^{x})x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !