Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(70 - x)}{6} + \frac{sqrt({x}^{2} + 3600)}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1}{6}x + \frac{1}{4}sqrt(x^{2} + 3600) + \frac{35}{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1}{6}x + \frac{1}{4}sqrt(x^{2} + 3600) + \frac{35}{3}\right)}{dx}\\=& - \frac{1}{6} + \frac{\frac{1}{4}(2x + 0)*\frac{1}{2}}{(x^{2} + 3600)^{\frac{1}{2}}} + 0\\=&\frac{x}{4(x^{2} + 3600)^{\frac{1}{2}}} - \frac{1}{6}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return