There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2{x}^{3} + 5{x}^{2} - 3x + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{3} + 5x^{2} - 3x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{3} + 5x^{2} - 3x + 1\right)}{dx}\\=&2*3x^{2} + 5*2x - 3 + 0\\=&6x^{2} + 10x - 3\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6x^{2} + 10x - 3\right)}{dx}\\=&6*2x + 10 + 0\\=&12x + 10\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !