Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3{({x}^{2} + 2500)}^{\frac{1}{2}} + 5(120 - x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3(x^{2} + 2500)^{\frac{1}{2}} - 5x + 600\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3(x^{2} + 2500)^{\frac{1}{2}} - 5x + 600\right)}{dx}\\=&3(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 2500)^{\frac{1}{2}}}) - 5 + 0\\=&\frac{3x}{(x^{2} + 2500)^{\frac{1}{2}}} - 5\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return