There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{x} - {(csc(x))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x} - csc^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x} - csc^{2}(x)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - -2csc^{2}(x)cot(x)\\=&{e}^{x} + 2cot(x)csc^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{x} + 2cot(x)csc^{2}(x)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 2*-csc^{2}(x)csc^{2}(x) + 2cot(x)*-2csc^{2}(x)cot(x)\\=&{e}^{x} - 2csc^{4}(x) - 4cot^{2}(x)csc^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !