There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {n}^{(1 - ln(n))}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {n}^{(-ln(n) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {n}^{(-ln(n) + 1)}\right)}{dn}\\=&({n}^{(-ln(n) + 1)}((\frac{-1}{(n)} + 0)ln(n) + \frac{(-ln(n) + 1)(1)}{(n)}))\\=&\frac{-2{n}^{(-ln(n) + 1)}ln(n)}{n} + \frac{{n}^{(-ln(n) + 1)}}{n}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !