There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (x - 4){e}^{x} + C{x}^{3} + C*2{x}^{2} + C*3x + C*4\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{x} - 4{e}^{x} + Cx^{3} + 2Cx^{2} + 3Cx + 4C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{x} - 4{e}^{x} + Cx^{3} + 2Cx^{2} + 3Cx + 4C\right)}{dx}\\=&{e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 4({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + C*3x^{2} + 2C*2x + 3C + 0\\=&-3{e}^{x} + x{e}^{x} + 3Cx^{2} + 4Cx + 3C\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -3{e}^{x} + x{e}^{x} + 3Cx^{2} + 4Cx + 3C\right)}{dx}\\=&-3({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + {e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 3C*2x + 4C + 0\\=&-2{e}^{x} + x{e}^{x} + 6Cx + 4C\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -2{e}^{x} + x{e}^{x} + 6Cx + 4C\right)}{dx}\\=&-2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + {e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 6C + 0\\=&-{e}^{x} + x{e}^{x} + 6C\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -{e}^{x} + x{e}^{x} + 6C\right)}{dx}\\=&-({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + {e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0\\=&x{e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !