There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x - 2){e}^{x} + Cx + C*2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{x} - 2{e}^{x} + Cx + 2C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{x} - 2{e}^{x} + Cx + 2C\right)}{dx}\\=&{e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + C + 0\\=&-{e}^{x} + x{e}^{x} + C\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -{e}^{x} + x{e}^{x} + C\right)}{dx}\\=&-({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + {e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0\\=&x{e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !