Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(a{(log_{2}^{n})}^{k})}{n}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a{log_{2}^{n}}^{k}}{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a{log_{2}^{n}}^{k}}{n}\right)}{dn}\\=&\frac{a*-{log_{2}^{n}}^{k}}{n^{2}} + \frac{a({log_{2}^{n}}^{k}((0)ln(log_{2}^{n}) + \frac{(k)((\frac{(\frac{(1)}{(n)} - \frac{(0)log_{2}^{n}}{(2)})}{(ln(2))}))}{(log_{2}^{n})}))}{n}\\=&\frac{-a{log_{2}^{n}}^{k}}{n^{2}} + \frac{ak{log_{2}^{n}}^{k}}{n^{2}log(2, n)ln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return