There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(a{(log_{2}^{n})}^{k})}{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a{log_{2}^{n}}^{k}}{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a{log_{2}^{n}}^{k}}{n}\right)}{dx}\\=&\frac{a({log_{2}^{n}}^{k}((0)ln(log_{2}^{n}) + \frac{(k)((\frac{(\frac{(0)}{(n)} - \frac{(0)log_{2}^{n}}{(2)})}{(ln(2))}))}{(log_{2}^{n})}))}{n}\\=& - \frac{0}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !