There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan(1 + x) + arctan(1 - x) - arctan(2{\frac{1}{x}}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(x + 1) + arctan(-x + 1) - arctan(\frac{2}{x^{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(x + 1) + arctan(-x + 1) - arctan(\frac{2}{x^{2}})\right)}{dx}\\=&(\frac{(1 + 0)}{(1 + (x + 1)^{2})}) + (\frac{(-1 + 0)}{(1 + (-x + 1)^{2})}) - (\frac{(\frac{2*-2}{x^{3}})}{(1 + (\frac{2}{x^{2}})^{2})})\\=&\frac{4}{(\frac{4}{x^{4}} + 1)x^{3}} - \frac{1}{(x^{2} - 2x + 2)} + \frac{1}{(x^{2} + 2x + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !