There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(\frac{(1 - {x}^{2})}{(1 + {x}^{2})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})\right)}{dx}\\=&(\frac{(-(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x^{2} - \frac{2x}{(x^{2} + 1)} + (\frac{-(2x + 0)}{(x^{2} + 1)^{2}}))}{((1 - (\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})^{2})^{\frac{1}{2}})})\\=&\frac{2x^{3}}{(\frac{-x^{4}}{(x^{2} + 1)^{2}} + \frac{2x^{2}}{(x^{2} + 1)^{2}} - \frac{1}{(x^{2} + 1)^{2}} + 1)^{\frac{1}{2}}(x^{2} + 1)^{2}} - \frac{2x}{(\frac{-x^{4}}{(x^{2} + 1)^{2}} + \frac{2x^{2}}{(x^{2} + 1)^{2}} - \frac{1}{(x^{2} + 1)^{2}} + 1)^{\frac{1}{2}}(x^{2} + 1)} - \frac{2x}{(\frac{-x^{4}}{(x^{2} + 1)^{2}} + \frac{2x^{2}}{(x^{2} + 1)^{2}} - \frac{1}{(x^{2} + 1)^{2}} + 1)^{\frac{1}{2}}(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !