There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (ax + b)cos(2)x + (cx + d)sin(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{2}cos(2) + bxcos(2) + cx^{2}sin(2) + dxsin(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{2}cos(2) + bxcos(2) + cx^{2}sin(2) + dxsin(2)\right)}{dx}\\=&a*2xcos(2) + ax^{2}*-sin(2)*0 + bcos(2) + bx*-sin(2)*0 + c*2xsin(2) + cx^{2}cos(2)*0 + dsin(2) + dxcos(2)*0\\=&2axcos(2) + bcos(2) + 2cxsin(2) + dsin(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !