Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{cos(x)}{2} - \frac{ln(cot(x) + csc(x))}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}cos(x) - \frac{1}{2}ln(cot(x) + csc(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}cos(x) - \frac{1}{2}ln(cot(x) + csc(x))\right)}{dx}\\=&\frac{1}{2}*-sin(x) - \frac{\frac{1}{2}(-csc^{2}(x) + -csc(x)cot(x))}{(cot(x) + csc(x))}\\=&\frac{-sin(x)}{2} + \frac{csc^{2}(x)}{2(cot(x) + csc(x))} + \frac{cot(x)csc(x)}{2(cot(x) + csc(x))}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return