There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ln(1 - 2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(-2x + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(-2x + 1)\right)}{dx}\\=&\frac{(-2 + 0)}{(-2x + 1)}\\=&\frac{-2}{(-2x + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2}{(-2x + 1)}\right)}{dx}\\=&-2(\frac{-(-2 + 0)}{(-2x + 1)^{2}})\\=&\frac{-4}{(-2x + 1)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4}{(-2x + 1)^{2}}\right)}{dx}\\=&-4(\frac{-2(-2 + 0)}{(-2x + 1)^{3}})\\=&\frac{-16}{(-2x + 1)^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-16}{(-2x + 1)^{3}}\right)}{dx}\\=&-16(\frac{-3(-2 + 0)}{(-2x + 1)^{4}})\\=&\frac{-96}{(-2x + 1)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !