Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(1 - x)}{(1 + x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\right)}{dx}\\=&\frac{(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})}\\=&\frac{x}{(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})} - \frac{1}{(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})} - \frac{1}{(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})(x + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return