There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{e}^{(x + y)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(2x + 2y)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(2x + 2y)}\right)}{dx}\\=&({e}^{(2x + 2y)}((2 + 0)ln(e) + \frac{(2x + 2y)(0)}{(e)}))\\=&2{e}^{(2x + 2y)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !