There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2sin(2x - \frac{π}{8}) - 2sin(x - \frac{π}{4})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2sin(2x - \frac{1}{8}π) - 2sin(x - \frac{1}{4}π)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2sin(2x - \frac{1}{8}π) - 2sin(x - \frac{1}{4}π)\right)}{dx}\\=&2cos(2x - \frac{1}{8}π)(2 + 0) - 2cos(x - \frac{1}{4}π)(1 + 0)\\=&4cos(2x - \frac{1}{8}π) - 2cos(x - \frac{1}{4}π)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !