Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2})}{(1 + {x}^{2}sqrt(1 + {x}^{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x^{2}sqrt(x^{2} + 1) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x^{2}sqrt(x^{2} + 1) + 1)}\right)}{dx}\\=&(\frac{-(2xsqrt(x^{2} + 1) + \frac{x^{2}(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 0)}{(x^{2}sqrt(x^{2} + 1) + 1)^{2}})x^{2} + \frac{2x}{(x^{2}sqrt(x^{2} + 1) + 1)}\\=&\frac{-2x^{3}sqrt(x^{2} + 1)}{(x^{2}sqrt(x^{2} + 1) + 1)^{2}} - \frac{x^{5}}{(x^{2}sqrt(x^{2} + 1) + 1)^{2}(x^{2} + 1)^{\frac{1}{2}}} + \frac{2x}{(x^{2}sqrt(x^{2} + 1) + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return