There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x{(x - 5)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} - 10x^{2} + 25x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} - 10x^{2} + 25x\right)}{dx}\\=&3x^{2} - 10*2x + 25\\=&3x^{2} - 20x + 25\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2} - 20x + 25\right)}{dx}\\=&3*2x - 20 + 0\\=&6x - 20\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !