Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(330{x}^{4} + 330{x}^{2} - 560{x}^{3} - 560x + 160)}{(14x - 4)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{330x^{4}}{(14x - 4)} + \frac{330x^{2}}{(14x - 4)} - \frac{560x^{3}}{(14x - 4)} - \frac{560x}{(14x - 4)} + \frac{160}{(14x - 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{330x^{4}}{(14x - 4)} + \frac{330x^{2}}{(14x - 4)} - \frac{560x^{3}}{(14x - 4)} - \frac{560x}{(14x - 4)} + \frac{160}{(14x - 4)}\right)}{dx}\\=&330(\frac{-(14 + 0)}{(14x - 4)^{2}})x^{4} + \frac{330*4x^{3}}{(14x - 4)} + 330(\frac{-(14 + 0)}{(14x - 4)^{2}})x^{2} + \frac{330*2x}{(14x - 4)} - 560(\frac{-(14 + 0)}{(14x - 4)^{2}})x^{3} - \frac{560*3x^{2}}{(14x - 4)} - 560(\frac{-(14 + 0)}{(14x - 4)^{2}})x - \frac{560}{(14x - 4)} + 160(\frac{-(14 + 0)}{(14x - 4)^{2}})\\=&\frac{-4620x^{4}}{(14x - 4)^{2}} + \frac{1320x^{3}}{(14x - 4)} - \frac{4620x^{2}}{(14x - 4)^{2}} + \frac{660x}{(14x - 4)} + \frac{7840x^{3}}{(14x - 4)^{2}} - \frac{1680x^{2}}{(14x - 4)} + \frac{7840x}{(14x - 4)^{2}} - \frac{2240}{(14x - 4)^{2}} - \frac{560}{(14x - 4)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return