Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2x}{({e}^{y} - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x}{({e}^{y} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x}{({e}^{y} - 1)}\right)}{dx}\\=&2(\frac{-(({e}^{y}((0)ln(e) + \frac{(y)(0)}{(e)})) + 0)}{({e}^{y} - 1)^{2}})x + \frac{2}{({e}^{y} - 1)}\\=&\frac{2}{({e}^{y} - 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return