Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x{e}^{(2x)} - {(1 - 2x)}^{2}x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{(2x)} - 4x^{3} + 4x^{2} - x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{(2x)} - 4x^{3} + 4x^{2} - x\right)}{dx}\\=&{e}^{(2x)} + x({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) - 4*3x^{2} + 4*2x - 1\\=&{e}^{(2x)} + 2x{e}^{(2x)} - 12x^{2} + 8x - 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{(2x)} + 2x{e}^{(2x)} - 12x^{2} + 8x - 1\right)}{dx}\\=&({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 2{e}^{(2x)} + 2x({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) - 12*2x + 8 + 0\\=&4{e}^{(2x)} + 4x{e}^{(2x)} - 24x + 8\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return