There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2({x}^{2}){e}^{x} - \frac{({x}^{2} + 1)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{2}{e}^{x} - x - \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{2}{e}^{x} - x - \frac{1}{x}\right)}{dx}\\=&2*2x{e}^{x} + 2x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 1 - \frac{-1}{x^{2}}\\=&4x{e}^{x} + 2x^{2}{e}^{x} + \frac{1}{x^{2}} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !