There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{tan(x)}{ln(x - \frac{π}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{tan(x)}{ln(x - \frac{1}{2}π)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{tan(x)}{ln(x - \frac{1}{2}π)}\right)}{dx}\\=&\frac{-(1 + 0)tan(x)}{ln^{2}(x - \frac{1}{2}π)(x - \frac{1}{2}π)} + \frac{sec^{2}(x)(1)}{ln(x - \frac{1}{2}π)}\\=&\frac{-tan(x)}{(x - \frac{1}{2}π)ln^{2}(x - \frac{1}{2}π)} + \frac{sec^{2}(x)}{ln(x - \frac{1}{2}π)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !