There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 5{x}^{3} - \frac{135}{2}{x}^{2} + 5x + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5x^{3} - \frac{135}{2}x^{2} + 5x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5x^{3} - \frac{135}{2}x^{2} + 5x + 1\right)}{dx}\\=&5*3x^{2} - \frac{135}{2}*2x + 5 + 0\\=&15x^{2} - 135x + 5\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 15x^{2} - 135x + 5\right)}{dx}\\=&15*2x - 135 + 0\\=&30x - 135\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !