There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(1 - cos(2x))}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1}{4}cos(2x) + \frac{1}{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1}{4}cos(2x) + \frac{1}{4}\right)}{dx}\\=& - \frac{1}{4}*-sin(2x)*2 + 0\\=&\frac{sin(2x)}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{sin(2x)}{2}\right)}{dx}\\=&\frac{cos(2x)*2}{2}\\=&cos(2x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !