There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(arcsin(2)x)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}arcsin^{3}(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}arcsin^{3}(2)\right)}{dx}\\=&3x^{2}arcsin^{3}(2) + x^{3}(\frac{3arcsin^{2}(2)(0)}{((1 - (2)^{2})^{\frac{1}{2}})})\\=&3x^{2}arcsin^{3}(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !