There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{xln(1 + x)}{(1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xln(x + 1)}{(-x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xln(x + 1)}{(-x + 1)}\right)}{dx}\\=&(\frac{-(-1 + 0)}{(-x + 1)^{2}})xln(x + 1) + \frac{ln(x + 1)}{(-x + 1)} + \frac{x(1 + 0)}{(-x + 1)(x + 1)}\\=&\frac{xln(x + 1)}{(-x + 1)^{2}} + \frac{ln(x + 1)}{(-x + 1)} + \frac{x}{(x + 1)(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !