There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{x}}{(4{x}^{2} + {3}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{x}}{(4x^{2} + {3}^{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{x}}{(4x^{2} + {3}^{x})}\right)}{dx}\\=&(\frac{-(4*2x + ({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)})))}{(4x^{2} + {3}^{x})^{2}}){e}^{x} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(4x^{2} + {3}^{x})}\\=&\frac{-8x{e}^{x}}{(4x^{2} + {3}^{x})^{2}} - \frac{{3}^{x}{e}^{x}ln(3)}{(4x^{2} + {3}^{x})^{2}} + \frac{{e}^{x}}{(4x^{2} + {3}^{x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !