There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x - 2)}{({e}^{x} - 2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{({e}^{x} - 2x)} - \frac{2}{({e}^{x} - 2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{({e}^{x} - 2x)} - \frac{2}{({e}^{x} - 2x)}\right)}{dx}\\=&(\frac{-(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2)}{({e}^{x} - 2x)^{2}})x + \frac{1}{({e}^{x} - 2x)} - 2(\frac{-(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2)}{({e}^{x} - 2x)^{2}})\\=&\frac{-x{e}^{x}}{({e}^{x} - 2x)^{2}} + \frac{2x}{({e}^{x} - 2x)^{2}} + \frac{2{e}^{x}}{({e}^{x} - 2x)^{2}} + \frac{1}{({e}^{x} - 2x)} - \frac{4}{({e}^{x} - 2x)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !