There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(e + x) - ln(-x + e)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(e + x) - ln(-x + e)\right)}{dx}\\=&\frac{(0 + 1)}{(e + x)} - \frac{(-1 + 0)}{(-x + e)}\\=&\frac{1}{(e + x)} + \frac{1}{(-x + e)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !