Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(e + x)}{(e^{-x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(e + x)}{e^{-x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(e + x)}{e^{-x}}\right)}{dx}\\=&\frac{-e^{-x}*-ln(e + x)}{e^{{-x}*{2}}} + \frac{(0 + 1)}{e^{-x}(e + x)}\\=&\frac{ln(e + x)}{e^{-x}} + \frac{1}{(e + x)e^{-x}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return