There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{1}{(1 + {x}^{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(x^{3} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(x^{3} + 1)}\right)}{dx}\\=&(\frac{-(3x^{2} + 0)}{(x^{3} + 1)^{2}})\\=&\frac{-3x^{2}}{(x^{3} + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3x^{2}}{(x^{3} + 1)^{2}}\right)}{dx}\\=&-3(\frac{-2(3x^{2} + 0)}{(x^{3} + 1)^{3}})x^{2} - \frac{3*2x}{(x^{3} + 1)^{2}}\\=&\frac{18x^{4}}{(x^{3} + 1)^{3}} - \frac{6x}{(x^{3} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !