There are 1 questions in this calculation: for each question, the 1 derivative of X is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 + {X}^{2})}^{4}\ with\ respect\ to\ X:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = X^{8} + 4X^{6} + 6X^{4} + 4X^{2} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( X^{8} + 4X^{6} + 6X^{4} + 4X^{2} + 1\right)}{dX}\\=&8X^{7} + 4*6X^{5} + 6*4X^{3} + 4*2X + 0\\=&8X^{7} + 24X^{5} + 24X^{3} + 8X\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !