There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(\frac{(2 - x)}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(\frac{-1}{2}x + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(\frac{-1}{2}x + 1)\right)}{dx}\\=&(\frac{(\frac{-1}{2} + 0)}{((1 - (\frac{-1}{2}x + 1)^{2})^{\frac{1}{2}})})\\=&\frac{-1}{2(\frac{-1}{4}x^{2} + x)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !