There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{tan(\frac{πx}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{tan(\frac{1}{2}πx)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{tan(\frac{1}{2}πx)}\right)}{dx}\\=&\frac{-sec^{2}(\frac{1}{2}πx)(\frac{1}{2}π)}{tan^{2}(\frac{1}{2}πx)}\\=&\frac{-πsec^{2}(\frac{1}{2}πx)}{2tan^{2}(\frac{1}{2}πx)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !