There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(sinh(x))}^{2} - {(cosh(2)x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sinh^{2}(x) - x^{2}cosh^{2}(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sinh^{2}(x) - x^{2}cosh^{2}(2)\right)}{dx}\\=&2sinh(x)cosh(x) - 2xcosh^{2}(2) - x^{2}*2cosh(2)sinh(2)*0\\=&2sinh(x)cosh(x) - 2xcosh^{2}(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !