Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (({e}^{x} - 1){\frac{1}{e}}^{x}) - \frac{x}{x} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x}{\frac{1}{e}}^{x} - {\frac{1}{e}}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}{\frac{1}{e}}^{x} - {\frac{1}{e}}^{x}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})){\frac{1}{e}}^{x} + {e}^{x}({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) - ({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))\\=&{e}^{x}{\frac{1}{e}}^{x} - {\frac{1}{e}}^{x}{e}^{x} + {\frac{1}{e}}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return