There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({x}^{2}){e}^{(3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{(3x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{(3x)}\right)}{dx}\\=&2x{e}^{(3x)} + x^{2}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))\\=&2x{e}^{(3x)} + 3x^{2}{e}^{(3x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2x{e}^{(3x)} + 3x^{2}{e}^{(3x)}\right)}{dx}\\=&2{e}^{(3x)} + 2x({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) + 3*2x{e}^{(3x)} + 3x^{2}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))\\=&2{e}^{(3x)} + 12x{e}^{(3x)} + 9x^{2}{e}^{(3x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !