There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ Inte^{g}rate^{Divide^{4x - 3}}^{e^{r}(x}^{2} - x + 1}}}^{1}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Int^{2}rae^{g}e^{Di^{2}vde^{4x - 3}}^{xe^{r} - x + 1}}}^{1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Int^{2}rae^{g}e^{Di^{2}vde^{4x - 3}}^{xe^{r} - x + 1}}}^{1}\right)}{dx}\\=&Int^{2}rae^{g}*0e^{Di^{2}vde^{4x - 3}}^{xe^{r} - x + 1}}}^{1} + Int^{2}rae^{g}e^{Di^{2}vde^{4x - 3}}^{xe^{r} - x + 1}}Di^{2}vde^{4x - 3}(4 + 0)\\=&4Int^{2}raDi^{2}vde^{g}e^{4x - 3}e^{Di^{2}vde^{4x - 3}}^{xe^{r} - x + 1}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !