There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ k{x}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = kx^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( kx^{4}\right)}{dx}\\=&k*4x^{3}\\=&4kx^{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4kx^{3}\right)}{dx}\\=&4k*3x^{2}\\=&12kx^{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12kx^{2}\right)}{dx}\\=&12k*2x\\=&24kx\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24kx\right)}{dx}\\=&24k\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !