There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x - ct)}^{6} + {(x + ct)}^{6}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2(x - ct)^{6}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2(x - ct)^{6}\right)}{dx}\\=&2(6(x - ct)^{5}(1 + 0))\\=&12x^{5} - 60ctx^{4} + 120c^{2}t^{2}x^{3} - 120c^{3}t^{3}x^{2} + 60c^{4}t^{4}x - 12c^{5}t^{5}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !