There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{1}{(1 + (\frac{1}{3}){x}^{2} + (\frac{1}{4}){x}^{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)}\right)}{dx}\\=&(\frac{-(\frac{1}{3}*2x + \frac{1}{4}*3x^{2} + 0)}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}})\\=&\frac{-2x}{3(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}} - \frac{3x^{2}}{4(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x}{3(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}} - \frac{3x^{2}}{4(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}}\right)}{dx}\\=&\frac{-2(\frac{-2(\frac{1}{3}*2x + \frac{1}{4}*3x^{2} + 0)}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}})x}{3} - \frac{2}{3(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}} - \frac{3(\frac{-2(\frac{1}{3}*2x + \frac{1}{4}*3x^{2} + 0)}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}})x^{2}}{4} - \frac{3*2x}{4(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}}\\=&\frac{8x^{2}}{9(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}} + \frac{2x^{3}}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}} - \frac{3x}{2(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}} + \frac{9x^{4}}{8(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}} - \frac{2}{3(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !