There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x + ln(sqrt(1 + {x}^{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x + ln(sqrt(x^{2} + 1))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x + ln(sqrt(x^{2} + 1))\right)}{dx}\\=&1 + \frac{(2x + 0)*\frac{1}{2}}{(sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{x}{(x^{2} + 1)^{\frac{1}{2}}sqrt(x^{2} + 1)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !