There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{x}ln(1 + X)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x}ln(X + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}ln(X + 1)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(X + 1) + \frac{{e}^{x}(0 + 0)}{(X + 1)}\\=&{e}^{x}ln(X + 1)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !