There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(-{x}^{2} + 10x) - sqrt(-{x}^{2} + 12x - 20)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-x^{2} + 10x) - sqrt(-x^{2} + 12x - 20)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-x^{2} + 10x) - sqrt(-x^{2} + 12x - 20)\right)}{dx}\\=&\frac{(-2x + 10)*\frac{1}{2}}{(-x^{2} + 10x)^{\frac{1}{2}}} - \frac{(-2x + 12 + 0)*\frac{1}{2}}{(-x^{2} + 12x - 20)^{\frac{1}{2}}}\\=&\frac{-x}{(-x^{2} + 10x)^{\frac{1}{2}}} + \frac{x}{(-x^{2} + 12x - 20)^{\frac{1}{2}}} + \frac{5}{(-x^{2} + 10x)^{\frac{1}{2}}} - \frac{6}{(-x^{2} + 12x - 20)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !