There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(2 - x)}{x} + ax\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(-x + 2)}{x} + ax\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(-x + 2)}{x} + ax\right)}{dx}\\=&\frac{-ln(-x + 2)}{x^{2}} + \frac{(-1 + 0)}{x(-x + 2)} + a\\=&\frac{-ln(-x + 2)}{x^{2}} - \frac{1}{(-x + 2)x} + a\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !